
3.5 Initializing Objects with Constructors

(cont.)

• C++ automatically calls a constructor for each
object that is created, which helps ensure that
objects are initialized properly before they’re
used in a program.

• The constructor call occurs when the object is
created.

• If a class does not explicitly include
constructors, the compiler provides a default
constructor with no parameters.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

3.5 Initializing Objects with Constructors

(cont.)

• A constructor specifies in its parameter list the data it
requires to perform its task.

• When you create a new object, you place this data in the
parentheses that follow the object name.

• The constructor uses a member-initializer list (line 15) to
initialize the courseName data member with the value of
the constructor’s parameter name.

• Member initializers appear between a constructor’s
parameter list and the left brace that begins the constructor’s
body.

• The member initializer list is separated from the parameter
list with a colon (:).

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

3.5 Initializing Objects with Constructors

(cont.)

• A member initializer consists of a data member’s variable
name followed by parentheses containing the member’s
initial value.

• In this example, courseName is initialized with the value
of the parameter name.

• If a class contains more than one data member, each data
member’s initializer is separated from the next by a comma.

• The member initializer list executes before the body of the
constructor executes.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

3.5 Initializing Objects with Constructors

(cont.)

• Line 47 creates and initializes a GradeBook

object called gradeBook1.

– When this line executes, the GradeBook

constructor (lines 14–18) is called with the

argument "CS101 Introduction to C++

Programming" to initialize gradeBook1’s

course name.

• Line 48 repeats this process for the

GradeBook object called gradeBook2,

this time passing the argument "CS102 Data

Structures in C++" to initialize

gradeBook2’s course name.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

3.5 Initializing Objects with Constructors

(cont.)

• Any constructor that takes no arguments is called a default
constructor.

• A class gets a default constructor in one of several ways:
– The compiler implicitly creates a default constructor in every class

that does not have any user-defined constructors. The default
constructor does not initialize the class’s data members, but does
call the default constructor for each data member that is an object of
another class. An uninitialized variable contains an undefined
(―garbage‖) value.

– You explicitly define a constructor that takes no arguments. Such a
default constructor will call the default constructor for each data
member that is an object of another class and will perform
additional initialization specified by you.

– If you define any constructors with arguments, C++ will not
implicitly create a default constructor for that class.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

3.5 Initializing Objects with Constructors

(cont.)

• Like operations, the UML models constructors

in the third compartment of a class in a class

diagram.

• To distinguish a constructor from a class’s

operations, the UML places the word

―constructor‖ between guillemets (« and »)

before the constructor’s name.

• It’s customary to list the class’s constructor

before other operations in the third

compartment. ©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

3.6 Placing a Class in a Separate File for

Reusability

• One of the benefits of creating class definitions

is that, when packaged properly, our classes

can be reused by programmers—potentially

worldwide.

• Programmers who wish to use our

GradeBook class cannot simply include the

file from Fig. 3.7 in another program.

– As you learned in Chapter 2, function main

begins the execution of every program, and every

program must have exactly one main function. ©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

3.6 Placing a Class in a Separate File for

Reusability (cont.)

• Each of the previous examples in the chapter
consists of a single .cpp file, also known as a
source-code file, that contains a GradeBook
class definition and a main function.

• When building an object-oriented C++
program, it’s customary to define reusable
source code (such as a class) in a file that by
convention has a .h filename extension—
known as a header.

• Programs use #include preprocessing
directives to include header files and take
advantage of reusable software components.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

3.6 Placing a Class in a Separate File for

Reusability (cont.)

• Our next example separates the code from Fig. 3.7 into two

files—GradeBook.h (Fig. 3.9) and fig03_10.cpp

(Fig. 3.10).

– As you look at the header file in Fig. 3.9, notice that it contains only

the GradeBook class definition (lines 7–38) and the headers on

which the class depends.

– The main function that uses class GradeBook is defined in the

source-code file fig03_10.cpp (Fig. 3.10) in lines 8–18.

• To help you prepare for the larger programs you’ll

encounter later in this book and in industry, we often use a

separate source-code file containing function main to test

our classes (this is called a driver program).

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

